III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 DIGITAL ELECTRONICS (MECHANICAL ENGINEERING) (MECHATRONICS)

Time: 3hours

Max.Marks:80

Answer any FIVE questions

 All questions carry equal marks1.a) Explain the principle of operation of a clamper circuit.
b) What are the disadvantages of series and shunt clippers?
c) What is clamping circuit theorem?
2.a) Derive the expression for period of oscillations of an Astable multivibrator circuit.
b) Design a collector coupled monostable multivibrator to produce a time delay of 80μ Sec. Use transistor have h_{FE} of 150 . Use $\pm 12 \mathrm{~V}$ source, $\mathrm{V}_{\mathrm{CE}} \mathrm{Sat}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}} \mathrm{sat}=0.7 \mathrm{~V}$, $\mathrm{V}_{\text {BE }}$ cutoff $=0.1 \mathrm{~V}$.
3.a) Derive the expression for UTP and LTP in submit trigger by making necessary assumptions.
b) Explain the operation of current sweep circuit. List the applications of current sweep circuits.
4.a) What are the self complementing codes and explain them with examples.
b) Implement the following functions using AND-OR-NOT gates

$$
\begin{align*}
& \mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,5,6,7,8,10) \\
& \mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi(1,3,5,7,11,14) \tag{8+8}
\end{align*}
$$

5.a) Design a full adder using MUX
b) Prove that NAND gate is an universal gate.
6.a) Implement a JK flip flop using SR flip flops.
b) What are the excitations takes of D, T, JK and SR flip flops.
7.a) Explain in detail a 4 bit up/ down counter with Timing diagrams.
b) What are the four different possible configurations of shift registers? Draw a general 4-bit shift register and its timing diagrams.
8.a) Design a BCD to 7 segment decoder circuit.
b) Write a brief note on frequency synthesizer.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
DIGITAL ELECTRONICS
(MECHANICAL ENGINEERING)
(MECHATRONICS)
Time: 3hours
Max.Marks:80

Answer any FIVE questions

 All questions carry equal marks1.a) Derive the expression for UTP and LTP in submit trigger by making necessary assumptions.
b) Explain the operation of current sweep circuit. List the applications of current sweep circuits.
2.a) What are the self complementing codes and explain them with examples.
b) Implement the following functions using AND-OR-NOT gates

$$
\begin{align*}
& \mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,5,6,7,8,10) \\
& \mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi(1,3,5,7,11,14) \tag{8+8}
\end{align*}
$$

3.a) Design a full adder using MUX
b) Prove that NAND gate is an universal gate.
4.a) Implement a JK flip flop using SR flip flops.
b) What are the excitations takes of D, T, JK and SR flip flops.
5.a) Explain in detail a 4 bit up/ down counter with Timing diagrams.
b) What are the four different possible configurations of shift registers? Draw a general 4-bit shift register and its timing diagrams.
6.a) Design a BCD to 7 segment decoder circuit.
b) Write a brief note on frequency synthesizer.
7.a) Explain the principle of operation of a clamper circuit.
b) What are the disadvantages of series and shunt clippers?
c) What is clamping circuit theorem?
8.a) Derive the expression for period of oscillations of an Astable multivibrator circuit.
b) Design a collector coupled monostable multivibrator to produce a time delay of 80μ Sec. Use transistor have h_{FE} of 150 . Use $\pm 12 \mathrm{~V}$ source, V_{CE} Sat $=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}$ sat $=0.7 \mathrm{~V}$, V_{BE} cutoff $=0.1 \mathrm{~V}$.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 DIGITAL ELECTRONICS (MECHANICAL ENGINEERING) (MECHATRONICS)

Time: 3hours

Max.Marks:80

Answer any FIVE questions

 All questions carry equal marks1.a) Design a full adder using MUX
b) Prove that NAND gate is an universal gate.
2.a) Implement a JK flip flop using SR flip flops.
b) What are the excitations takes of D, T, JK and SR flip flops.
3.a) Explain in detail a 4 bit up/ down counter with Timing diagráms.
b) What are the four different possible configurations of shift registers? Draw a general 4-bit shift register and its timing diagrams.
4.a) Design a BCD to 7 segment decoder circuit.
b) Write a brief note on frequency synthesizer.
5.a) Explain the principle of operation of a clamper circuit.
b) What are the disadvantages of series and shunt clippers?
c) What is clamping circuit theorem?
6.a) Derive the expression for period of oscillations of an Astable multivibrator circuit.
b) Design a collector coupled monostable multivibrator to produce a time delay of 80μ Sec. Use transistor have h_{FE} of 150 . Use $\pm 12 \mathrm{~V}$ source, V_{CE} Sat $=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}$ sat $=0.7 \mathrm{~V}$, $V_{\text {BE }}$ cutoff $=0.1 \mathrm{~V}$.
7.a) Derive the expression for UTP and LTP in submit trigger by making necessary assumptions.
b) Explain the operation of current sweep circuit. List the applications of current sweep circuits.
8.a) What are the self complementing codes and explain them with examples.
b) Implement the following functions using AND -OR-NOT gates

$$
\begin{align*}
& \mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,5,6,7,8,10) \\
& \mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi(1,3,5,7,11,14) . \tag{8+8}
\end{align*}
$$

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010 DIGITAL ELECTRONICS (MECHANICAL ENGINEERING) (MECHATRONICS)

Time: 3hours

Max.Marks:80

Answer any FIVE questions

 All questions carry equal marks1.a) Explain in detail a 4 bit up/ down counter with Timing diagrams.
b) What are the four different possible configurations of shift registers? Draw a general 4-bit shift register and its timing diagrams.
2.a) Design a BCD to 7 segment decoder circuit.
b) Write a brief note on frequency synthesizer.
3.a) Explain the principle of operation of a clamper circuit.
b) What are the disadvantages of series and shunt clippers?
c) What is clamping circuit theorem?
4.a) Derive the expression for period of oscillations of an Astable multivibrator circuit.
b) Design a collector coupled monostable multivibrator to produce a time delay of 80μ Sec. Use transistor have h_{FE} of 150 . Use $\pm 12 \mathrm{~V}$ source, V_{CE} Sat $=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}$ sat $=0.7 \mathrm{~V}$, V_{BE} cutoff $=0.1 \mathrm{~V}$.
5.a) Derive the expression for UTP and LTP in submit trigger by making necessary assumptions.
b) Explain the operation of current sweep circuit. List the applications of current sweep circuits.
6.a) What are the self complementing codes and explain them with examples.
b) Implement the following functions using AND-OR-NOT gates

$$
\begin{align*}
& \mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,5,6,7,8,10) \\
& \mathrm{f}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi(1,3,5,7,11,14) . \tag{8+8}
\end{align*}
$$

7.a) Design a full adder using MUX
b) Prove that NAND gate is an universal gate.
8.a) Implement a JK flip flop using SR flip flops.
b) What are the excitations takes of D, T, JK and SR flip flops.

